

Ultramid® Structure A3WG12 LF BK564

Polyamide 66

Product Description

Ultramid Structure A3WG12 LF BK564 is a long glass-fiber reinforced and heat aging resistant injection molding grade designed for applications requiring excellent strength and stiffness.

PHYSICAL		ISO Test Method	Property Value	
Density, g/cm		1183	1.68	
Mold Shrinkage, parallel, %		294-4	0.35	
Mold Shrinkage, normal, %		294-4	0.71	
MECHANICAL		ISO Test Method	Dry	Conditioned
Tensile Modulus, MPa		527		
23C			20,600	16,000
Tensile stress at break, MPa		527		
23C			250	210
Tensile strain at break, %		527		
23C			1.6	1.8
Flexural Strength, MPa		178		
23C			410	318
Flexural Modulus, MPa		178		
23C			19,400	16,400
IMPACT		ISO Test Method	Dry	Conditioned
Izod Notched Impact, kJ/m ²		180		
23C			37	36
Charpy Notched, kJ/m ²		179		
23C			37	37
-30C			43	43
Charpy Unnotched, kJ/m ²		179		
23C			86	89
-30C			70	74
THERMAL		ISO Test Method	Dry	Conditioned
Melting Point, C		3146	260	-
HDT A, C		75	260	-

Processing Guidelines

Material Handling

Max. Water content: 0.12%

Ultramid is supplied in sealed containers and drying prior to molding in a dehumidifying or desiccant dryer is recommended. Drying parameters are dependent upon the actual percentage of moisture in the pellets and typical pre-drying conditions are 2-4 hours at 83 degC (181 degF). Recommended moisture levels for achieving optimum surface qualities and mechanical properties is 0.03% - 0.08%. Further information concerning safe handling procedures can be obtained from the Material Safety Data Sheet (MSDS), or by contacting your BASF representative.

Typical Profile

Melt Temperature 290-310 degC (554-590 degF)

Mold Temperature 80-100 degC (176-212 degF)

BASF Corporation
Engineering Plastics
609 Biddle Avenue
Yandotte, MI 48192

Injection and Packing Pressure 35-125 bar (500-1500 psi)

Mold Temperatures

A mold temperature of 80-100 degC (176-212 degF) is recommended.

Pressures

Injection pressure controls the filling of the part and should be applied for 90% of ram travel. Packing pressure affects the final part and can be used effectively in controlling sink marks and shrinkage. It should be applied and maintained until the gate area is completely frozen off.

Back pressure can be utilized to provide uniform melt consistency and reduce trapped air and gas. Minimal back pressure should be utilized to prevent glass breakage.

Fill Rate

Fast fill rates are recommended to ensure uniform melt delivery to the cavity and prevent premature freezing. Surface appearance is directly affected by injection rate.

Note

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.

BASF Corporation
Engineering Plastics
609 Biddle Avenue
Yandotte, MI 48192

塑料数据专家 www.ponci.com.cn/wxb/ +13538586433 +18816996168

Page 2 of 4

